Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis

نویسندگان

  • Huiyan Ye
  • Mingzhu Cai
  • Huimin Zhang
  • Zhencui Li
  • Ronghui Wen
  • Youjun Feng
چکیده

Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathway. In contrast, it retains a bioY, a biotin transporter-encoding gene, indicating an alternative survival strategy for S. suis to scavenge biotin from its inhabiting niche. Here we report functional definition of S. suis birA homologue. The in vivo functions of the birA paralogue with only 23.6% identity to the counterpart of E. coli, was judged by its ability to complement the conditional lethal mutants of E. coli birA. The recombinant BirA protein of S. suis was overexpressed in E. coli, purified to homogeneity and verified with MS. Both cellulose TLC and MALDI-TOFF-MS assays demonstrated that the S. suis BirA protein catalyzed the biotinylation reaction of its acceptor biotin carboxyl carrier protein. EMSA assays confirmed binding of the bioY gene to the S. suis BirA. The data defined the first example of the bifunctional BirA ligase/repressor in Streptococcus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The β-galactosidase (BgaC) of the zoonotic pathogen Streptococcus suis is a surface protein without the involvement of bacterial virulence

Streptococcal pathogens have evolved to express exoglycosidases, one of which is BgaC β-galactosidase, to deglycosidate host surface glycolconjucates with exposure of the polysaccharide receptor for bacterial adherence. The paradigm BgaC protein is the bgaC product of Streptococcus, a bacterial surface-exposed β-galactosidase. Here we report the functional definition of the BgaC homologue from ...

متن کامل

The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

UNLABELLED The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well ...

متن کامل

MsmK, an ATPase, Contributes to Utilization of Multiple Carbohydrates and Host Colonization of Streptococcus suis

Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase fr...

متن کامل

Streptococcus suis – The “Two Faces” of a Pathobiont in the Porcine Respiratory Tract

Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldw...

متن کامل

Streptococcal Adhesin P (SadP) contributes to Streptococcus suis adhesion to the human intestinal epithelium

BACKGROUND Streptococcus suis is a zoonotic pathogen, causing meningitis and septicemia. We previously demonstrated that the gastrointestinal tract (GIT) is an entry site for zoonotic S. suis infection. Here we studied the contribution of Streptococcal adhesin Protein (SadP) to host-pathogen interaction at GIT level. METHODS SadP expression in presence of Intestinal Epithelial Cells (IEC) was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016